首页 | 本学科首页   官方微博 | 高级检索  
     

基于约简遗传规划的线参数模型及在航空发动机起动建模中的应用
引用本文:李应红,尉询楷. 基于约简遗传规划的线参数模型及在航空发动机起动建模中的应用[J]. 中国航空学报, 2006, 19(4): 295-303. DOI: 10.1016/S1000-9361(11)60331-2
作者姓名:李应红  尉询楷
作者单位:Department of Aircraft and Power Engineering, School of Engineering, Air Force Engineering University, Xi ' an 710038, China
基金项目:Foundation item: National Defense Advanced Research Foundation of China
摘    要:
提出了一种新的约简遗传规划(PGP)算法和一种新的基于约简遗传规划的航空发动机起动动态线参数模型.这种模型采用遗传规划产生航空发动机起动模型的输入输出非线性模型集,并以二叉树结构表征函数项,运用正交最小二乘算法(OLS)估计二叉树分支(基本函数项)对于模型精度的贡献并去除复杂、冗余的函数项,从而加快遗传规划的收敛速度,最后通过GP进化可获得简单、可靠、准确的线参数非线性模型.发动机起动过程试车数据建模和与支持向量机的比较证明,这种方法可以产生适用性好、解析性强的线参数非线性模型,产生的模型可获得与支持向量机相当甚至更优的结果.

关 键 词:航空、航天推进系统  线参数非线性模型  约简遗传规划  航空发动机动态起动模型  aerospace propulsion system  linear-in-parameter nonlinear model  Parsimonious Genetic Programming (PGP)  aero-engine dynamic start model
文章编号:1000-9361(2006)04-0295-09
收稿时间:2005-09-23
修稿时间:2005-12-05

Linear-in-Parameter Models Based on Parsimonious Genetic Programming Algorithm and Its Application to Aero-Engine Start Modeling
LI Ying-hong,WEI Xun-kai. Linear-in-Parameter Models Based on Parsimonious Genetic Programming Algorithm and Its Application to Aero-Engine Start Modeling[J]. Chinese Journal of Aeronautics, 2006, 19(4): 295-303. DOI: 10.1016/S1000-9361(11)60331-2
Authors:LI Ying-hong  WEI Xun-kai
Affiliation:Department of Aircraft and Power Engineering, School of Engineering, Air Force Engineering University, Xi''an 710038, China
Abstract:
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.
Keywords:aerospace propulsion system  linear-in-parameter nonlinear model  Parsimonious Genetic Pro- gramming (PGP)  aero-engine dynamic start model
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号