Possible physical properties of the flow in the vicinity of the heliopause |
| |
Authors: | V.B. Baranov |
| |
Affiliation: | Institute for Problems in Mechanics, Russian Academy of Sciences, Prospect Vernadskogo 101, k. 1, 119526 Moscow, Russian Federation; Moscow State University, Faculty of Mechanics and Mathematics, Vorobievy gori, Moscow, Russian Federation |
| |
Abstract: | An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath. |
| |
Keywords: | Heliopause Shock waves Tangential discontinuity Heliosheath Solar wind Local interstellar medium Magnetic field |
本文献已被 ScienceDirect 等数据库收录! |
|