首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线学习RBF神经网络的故障预报
引用本文:黄红梅,胡寿松. 基于在线学习RBF神经网络的故障预报[J]. 南京航空航天大学学报, 2007, 39(2): 249-252
作者姓名:黄红梅  胡寿松
作者单位:南京航空航天大学自动化学院,南京,210016;南京航空航天大学自动化学院,南京,210016
基金项目:国家自然科学基金,航空基础科学基金
摘    要:提出了一种基于在线学习神经网络的故障预报方法.该方法在网络设计过程中结合了"添加"准则和基于对网络输出贡献相对较小的"剪枝"准则."添加"过程中利用隐层的最大输出判断神经元的活跃性;"剪枝"过程中加入了滑动窗口,避免了误"剪枝".同时,调整过程只对输出响应比较大的神经元进行,大大减少了计算量,提高了实时性.仿真结果表明,利用该算法能够对一类带时变参数的非线性系统进行故障预报.

关 键 词:故障预报  RBF神经网络  在线学习算法  时变参数  非线性系统
文章编号:1005-2615(2007)02-0249-04
修稿时间:2006-05-30

Fault Prediction Method Based on RBF Network On-Line Learning
Huang Hongmei,Hu Shousong. Fault Prediction Method Based on RBF Network On-Line Learning[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 249-252
Authors:Huang Hongmei  Hu Shousong
Abstract:A fault prediction method is presented based on neural network on-line learning.The method combines the growth criterion with a pruning strategy based on the relative contribution of each hidden unit to the network output in the process of the network design.The growth process uses the maximum output to judge activation of the neurons.The sliding window is added into the pruning strategy to avoid improper pruning.Meanwhile,the adjusting course is carried out through only some neurons with the larger output,thus leading the reduction of calculating magnitude and the improvement of the real time.Simulation results indicate that the algorithm can predict faults in a class of nonlinear systems with time-varying parameter.
Keywords:fault prediction  RBF neural network  on-line learning algorithm  time-varying parameter  nonlinear system
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号