Predicting an upper bound on SAR ATR performance |
| |
Authors: | Boshra M. Bhanu B. |
| |
Affiliation: | Center for Res. in Intelligent Syst., California Univ., Riverside, CA; |
| |
Abstract: | We present a method for predicting a tight upper bound on performance of a vote-based approach for automatic target recognition (ATR) in synthetic aperture radar (SAR) images. In such an approach, each model target is represented by a set of SAR views, and both model and data views are represented by locations of scattering centers. The proposed method considers data distortion factors such as uncertainty, occlusion, and clutter, as well as model factors such as structural similarity. Firstly, we calculate a measure of the similarity between a given model view and each view in the model set, as a function of the relative transformation between them. Secondly we select a subset of possible erroneous hypotheses that correspond to peaks in similarity functions obtained in the first step. Thirdly, we determine an upper bound on the probability of correct recognition by computing the probability that every selected hypothesis gets less votes than those for the model view under consideration. The proposed method is validated using MSTAR public SAR data, which are obtained under different depression angles, configurations, and articulations |
| |
Keywords: | |
|
|