首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of magnetohydrodynamic shock propagation in the corona
Authors:S T Wu
Institution:(1) The University of Alabama in Huntsville, 35899 Huntsville, Ala., USA
Abstract:Recent developments in the field of numerical simulation models for the study of shock wave propagation in the corona are presented. These models are based on gasdynamic (GD) and ideal (that is, dissipationless, except at shocks) magnetohydrodynamic (MHD) theories. The characteristics and physical interpretations of the results derived from these models are discussed in some detail.The most significant physical results obtained to date are provided by the two-dimensional non-planar, time-dependent, MHD numerical simulation model. In this model, the non-linear interaction among the three essential MHD waves, i.e., fast-, slow-, and Alfvén waves are demonstrated. Finally, the physical relevance of these numerical simulation models in relation to observed solar activity is presented.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号