涡轴发动机高精度实时部件级模型研究 |
| |
作者姓名: | 廖光煌 焦洋 李秋红 黄金泉 |
| |
作者单位: | 南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016; 中国航空动力控制系统研究所,江苏 无锡 214063,南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016,南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016,南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室,江苏 南京 210016 |
| |
摘 要: | 提出了基于神经网络的涡轴发动机共同工作方程求解方法。在基于牛顿-拉夫逊迭代法求解共同工作方程的模型上采集离线训练数据,以共同工作方程迭代求解前的残差为输入,迭代收敛后的共同工作方程猜值修正量为输出,训练BP神经网络,对共同工作方程进行求解。采用变缩放因子的萤火虫算法优化神经网络参数,提高了猜值修正量的预测精度。在飞行包线的某一区域内,采集额定发动机在直升机前飞过程的数据进行神经网络离线训练,并将网络参数代入部件级模型对共同工作方程进行求解,在训练数据采集区域附近的爬升状态、远离训练数据采集区域的前飞状态下进行测试,计算模型输出与牛顿-拉夫逊迭代算法模型输出的偏差,与一次通过算法相比,本文提出方法模型输出最大偏差约为一次通过算法的1/34到1/4,模型运行耗时约为一次通过算法的2/5,验证了算法的有效性。
|
关 键 词: | 涡轴发动机 数学模型 共同工作方程 BP神经网络 萤火虫算法 |
收稿时间: | 2014-09-23 |
修稿时间: | 2014-10-27 |
|
|