首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancement and Validation of the IDES Orbital Debris Environment Model
Authors:R Walker  PH Stokes  JE Wilkinson  GG Swinerd
Institution:(1) Space Department, Defence Evaluation & Research Agency, Farnborough, Hants., GU14 0LX, UK;(2) Department of Aeronautics & Astronautics, University of Southampton, Hants., SO17 1BJ, UK
Abstract:Orbital debris environment models are essential in predicting the characteristics of the entire debris environment, especially for altitude and size regimes where measurement data is sparse. Most models are also used to assess mission collision risk. The IDES (Integrated Debris Evolution Suite) simulation model has recently been upgraded by including a new sodium–potassium liquid coolant droplet source model and a new historical launch database. These and other features of IDES are described in detail. The accuracy of the IDES model is evaluated over a wide range of debris sizes by comparing model predictions to three major types of debris measurement data in low Earth orbit. For the large-size debris population, the model is compared with the spatial density distribution of the United States (US) Space Command Catalog. A radar simulation model is employed to predict the detection rates of mid-size debris in the field of view of the US Haystack radar. Finally, the small-size impact flux relative to a surface of the retrieved Long Duration Exposure Facility (LDEF) spacecraft is predicted. At sub-millimetre sizes, the model currently under-predicts the debris environment encountered at low altitudes by approximately an order of magnitude. This is because other small-size debris sources, such as paint flakes have not yet been characterised. Due to the model enhancements, IDES exhibits good accuracy when predicting the debris environment at decimetre and centimetre sizes. Therefore, the validated initial conditions and the high fidelity future traffic model enables IDES to make long-term debris environment projections with more confidence.
Keywords:debris measurements  low Earth orbit  model accuracy  modelling and simulation  orbital debris environment
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号