首页 | 本学科首页   官方微博 | 高级检索  
     

圆截面空间曲杆的屈曲
引用本文:谈梅兰,王鑫伟. 圆截面空间曲杆的屈曲[J]. 南京航空航天大学学报(英文版), 2004, 21(4)
作者姓名:谈梅兰  王鑫伟
作者单位:南京航空航天大学航空宇航学院,南京,210016,中国;江苏大学理学院,镇江,212013,中国;南京航空航天大学航空宇航学院,南京,210016,中国
基金项目:美国史密斯钻头公司(2001-013-13L)资助项目。~~
摘    要:采用自然坐标系对空间曲杆进行有限元建模,给出了自然坐标系下的三维细长空间曲杆的格林应变计算公式和能量方程,建立了2节点12个自由度的三维曲梁单元并用其分析了同时受轴向力和轴向扭矩作用的具有初始曲率和挠率的三维空间曲杆的屈曲问题。算例证明了公式和方程的正确性和合理性。数值结果与现有的理论解相吻合,收敛性却比商用有限元软件的结果好。数值结果还表明,扭矩对屈曲的影响不可不计。

关 键 词:有限元  屈曲  格林应变  位移函数  空间曲杆

BUCKLING OF SPATIAL CURVED RODS WITH CIRCULAR CROSS-SECTIONS
TAN Mei-lan ,,WANG Xin-wei. BUCKLING OF SPATIAL CURVED RODS WITH CIRCULAR CROSS-SECTIONS[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2004, 21(4)
Authors:TAN Mei-lan     WANG Xin-wei
Affiliation:TAN Mei-lan 1,2,WANG Xin-wei1
Abstract:Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.
Keywords:finite elements  buckling  Green strain  displacement functions  spatial curved rods
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号