首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的磁悬浮飞轮控制
引用本文:陈小飞,吉莉,刘昆. 基于BP神经网络的磁悬浮飞轮控制[J]. 航天控制, 2010, 28(5)
作者姓名:陈小飞  吉莉  刘昆
作者单位:国防科技大学航天与材料工程学院,长沙,410073;国防科技大学航天与材料工程学院,长沙,410073;国防科技大学航天与材料工程学院,长沙,410073
摘    要:针对磁悬浮飞轮控制对鲁棒性、低功耗及不平衡振动抑制等要求,提出BP神经网络直接控制方法。设计了两层结构BP神经网络控制器,基于磁轴承电磁力方程推导网络权值更新算法,实现了神经网络的在线训练。仿真表明,控制器权值更新算法对环境变化适应能力强,训练成功率高;BP神经网络控制器具有起浮迅速、抗干扰能力强、功耗低等性能,并具备不平衡振动抑制能力。结果表明BP神经网络控制器满足磁悬浮飞轮控制要求,具有可行性和有效性。

关 键 词:磁悬浮飞轮系统  磁轴承  BP神经网络  不平衡振动

Control of Magnetic Suspended Flywheel Using BP Neural Network
CHEN Xiaofei,JI Li,LIU Kun. Control of Magnetic Suspended Flywheel Using BP Neural Network[J]. Aerospace Control, 2010, 28(5)
Authors:CHEN Xiaofei  JI Li  LIU Kun
Affiliation:CHEN Xiaofei JI Li LIU KunCollege of Aerospace and Material Engineering,National University of Defense Technology,Changsha 410073,China
Abstract:A BP neural network(NN) controller is proposed to meet the control requirements of magnetic suspended flywheel(MSF),such as robustness,low power consumption and unbalance compensation.A two-layer BP NN controller is designed,from which the weights updating is derived based on magnetic force equation,and the training of NN controller is performed online in the control loop.The simulation shows that the weight updating algorithm is robust against disturbance and guarantees the training ratio,and the rapid res...
Keywords:Magnetic suspended flywheel system  Magnetic bearings  BP neural network  Unbalance compensation  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号