首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群核极限学习机的涡扇发动机加速过程模型辨识
作者姓名:赵姝帆  李本威  钱仁军  朱飞翔
作者单位:海军航空大学 航空基础学院,海军航空大学 航空基础学院,海军航空大学 航空基础学院,海军航空大学 航空基础学院
基金项目:国家自然科学基金(51505492);山东省自然科学基金(ZR2016FQ19);泰山学者建设工程专项经费资助。
摘    要:针对解析法建立涡扇发动机加速过程模型精度和实时性不高的问题,提出了一种基于粒子群核极值学习机(PSO-KELM)的涡扇发动机加速过程模型数据驱动辨识方法,构建涡扇发动机加速过程模型,结合加速过程试车数据,利用PSO-KELM方法对该加速模型进行辨识。试验结果表明:低压转子转速、高压转子转速和低压涡轮出口燃气总温都较好地逼近了试车数据,最大相对误差均值分别为1.013%,0.355%和1.055%,平均计算时间为0.04ms。精度和实时性均优于反向传播神经网络和粒子群支持向量回归方法,可用于发动机状态监控和性能优化控制。

关 键 词:涡扇发动机  加速过程  核极限学习机  数据驱动  模型辨识
收稿时间:2019-08-27
修稿时间:2019-09-24
本文献已被 CNKI 等数据库收录!
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号