摘 要: | 为了进一步提高基于独立分量分析(IndependentComponentAnalysis,ICA)的遥感图像变化检测精确度,并解决ICA分离的图像分量排序不确定问题,提出了基于小波变换和核独立分量分析(KernelIndependentComponentAnalysis,KICA)的遥感图像变化检测方法。首先通过小波变换对遥感图像进行分解,得到由图像的高频分量和低频分量组成的分块向量,然后利用核函数将分块向量映射到高维特征空间中,再在该空间中用ICA方法分离出互相独立的向量,最后根据分离出的向量中高频分量的差异自动分辨出变化分量。文章给出了遥感图像变化检测方法及近年提出的基于主分量分析(PrincipalComponentAnalysis,PCA)、基于ICA、基于KICA三种变化检测方法的试验结果,并进行了分析和定量比较。试验结果表明,文中方法能更好地分离出遥感图像的变化信息,具有更高的精确度,并实现了变化检测的智能化。
|