首页 | 本学科首页   官方微博 | 高级检索  
     


Bright light as a chronobiological countermeasure for shiftwork in space
Authors:Samel A  Gander P
Affiliation:

* DLR-Institue of Aerospace Medicine, Under Hohe, D-51147, Koln, Germany

SJSU Foundation, NASA-Ames Research Cebter, Moffett Field/CA, USA

Abstract:
Work-rest schedules during long duration space missions involve several factors which could disrupt sleep and circadian temporal organisation: (1) displacement of sleep due to two-shift operations; (2) planned or unplanned schedule changes due to operational requirements; (3) social and light Zeitgebers different from those on earth; (4) changes in the gravitational exposure. Timed bright light treatment has the potential to accelerating adaptation to schedule changes. Four male subjects were exposed to two sessions of 11 d of simulated microgravity (6 ° head down tilt bedrest) with 6-h extensions of the wake period on 2 days (12-h phase delay). In a blind crossover design, subjects were exposed to bright light (> 3500 lux) for 5 h on each of the 2 shift days and the following day, at times either expected to accelerate the adjustment to the phase delay (experimental condition) or to have no phase shifting effect (control condition). Sleep was recorded polygraphically, the circadian system was monitored by recordings of heart rate and body temperature, and by collection of urine (electrolyte and hormone excretion). Only the rhythms of 6-hydroxymelatoninsulphate and potassium excretions showed significantly enhanced adjustment under the experimental condition. Different rhythms Actapted to the 12-h delay at different rates, comparable to those observed after time zone shifts. Sleep was shorter in simulated weightlessness than in normal ambulatory age-matched subjects, consistent with the shorter sleep durations characteristic of space flight. These results confirm the disruptive effects of wake-rest schedule shifts on sleep and circadian rhythms. Contrary to our initial hypothesis, 5-h exposures to bright light finishing at the time of the circadian temperature minimum were not more effective at accelerating adjustment to a 12-h schedule delay than exposures coinciding with the temperature maximum. We conclude that, while bright light may accelerate adjustment to work-rest schedule delays, any such effect seems to be largely independent from the timing of the light exposure.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号