首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络预测模型的歼击机结构故障检测方法
引用本文:胡寿松,汪晨曦. 基于神经网络预测模型的歼击机结构故障检测方法[J]. 航空学报, 2000, 21(4): 355-357
作者姓名:胡寿松  汪晨曦
作者单位:南京航空航天大学自动控制系,江苏南京210016
基金项目:国家自然科学基金,航空科学基金资助项目
摘    要:提出了一种基于预测神经网络的歼击机结构故障检测新方法 ,与传统的基于模型的非线性系统的故障检测方法相比 ,神经网络方法有着非线性逼近能力强和故障检测实时性好等优点。给出了基于预测神经网络的故障检测方案 ,以及多步直接预测算法和阈值选取原则 ,最后以某型歼击机为例进行了仿真验证 ,仿真结果表明本方法能有效地检测出歼击机的各种结构故障。

关 键 词:预测神经网络  故障检测  阈值  
收稿时间:1999-04-13;
修稿时间:1999-04-13

STRUCTURE FAULT DETECTION BASED ON NEURAL NETWORK PREDICTION MODEL FOR A FIGHTER
HU Shou song,WANG Chen xi. STRUCTURE FAULT DETECTION BASED ON NEURAL NETWORK PREDICTION MODEL FOR A FIGHTER[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(4): 355-357
Authors:HU Shou song  WANG Chen xi
Affiliation:Department of Automatic Control,Nanjing Univ. of Aero. and Astro.,Nanjing 210016,China
Abstract:This paper describes the application of neural networks for structure failure detection for a fighter. As compared with traditional model based failure detection for nonlinear systems, neural network methods have the advantages of strong nonlinear approximation ability and fast detection. A prediction neural network scheme for fault detection has been developed, along with multiple step direct prediction algorithm and threshold selection principle in this paper. Finally, the proposed scheme is demonstrated using the model of a fighter and the results show that the neural network method is an effective tool for structure fault detection of a fighter.
Keywords:prediction neural network  failure detection  threshold
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号