Post: Polar stratospheric telescope |
| |
Authors: | Pierre Y. Bely Holland C. Ford Richard Burg Larry Petro Rick White John Bally |
| |
Affiliation: | (1) Space Telescope Science Institute, Baltimore, MD, USA;(2) University of Colorado, Boulder, CO, USA |
| |
Abstract: | ![]() The tropopause, typically at 16 to 18 km altitude at the lower latitudes, dips to 8 km in the polar regions. This makes the cold, dry and nonturbulent lower stratosphere accessible to tethered aerostats. Tethered aerostats can fly as high as 12 km and are extremely reliable, lasting for many years. In contrast to free-flying balloons, they can stay on station for weeks at a time, and payloads can be safely recovered for maintenance and adjustment and relaunched in a matter of hours. We propose to use such a platform, located first in the Arctic (near Fairbanks, Alaska) and, potentially, later in the Antarctic, to operate a new technology 6-meter, diluted aperture telescope with diffraction-limited performance in the near infrared. Thanks to the low ambient temperature (220 K), thermal emission from the optics is of the same order as that of the zodiacal light in the 2 to 3 micron band. Since this wavelength interval is the darkest part of the zodiacal light spectrum from optical wavelengths to 100 microns, the combination of high resolution images and a very dark sky make it the spectral region of choice for observing the redshifted light from galaxies and clusters of galaxies at moderate to high redshifts.Affiliated to the Astrophysics Division, Space Science Department, European Space Agency |
| |
Keywords: | Infrared telescopes Balloons |
本文献已被 SpringerLink 等数据库收录! |
|