摘 要: | 应用Murman-Cole的有限差分法,求解具有纵向大扰动而横向小扰动的跨音速轴对称速势方程,由此计算旋转体跨音速零升力时的压力分布和波阻力,以及激波位置。物面边界条件被转移到物体轴上。远场边界条件由无穷远处的条件近似代替。计算物面压力系数时,用细长体理论进行物面速势插值。 速势的差分方程用沿半径方向线超松弛改进迭代求解。网格取62×16,迭代初场取零,达到收敛的迭代次数对M_∞<1,M_∞>1以及M_∞≈1分别大约为150,40和300次。松弛因子取为:M_∞<1时,0.9≤ω_b≤1.7,0.9≤ω_p<1.0;M_∞≥1时,0.8≤ω_b≤0.9,0.8≤ω_p≤0.9,这里ω_b,ω_p分别为局部亚音速点和超音速点的松弛因子。 算例为七种不同外形的细长体,计算结果与实验符合尚好。 文中对网格、初场、迭代方法、松弛因子等有关收敛性、收敛速度问题进行了探讨。在局部线化条件下,对定常小扰动轴对称势流的差分方程,进行了线超松弛迭代的稳定性和收敛性分析。数值计算经验与理论分析所得结论相符。
|