首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Damage localization effects of the regeneratively-cooled thrust chamber wall in LOX/methane rocket engines
Authors:Jiawen SONG  Bing SUN
Institution:School of Astronautics, Beihang University, Beijing 100083, China
Abstract:To investigate the damage localization effects of the thrust chamber wall caused by combustions in LOX/methane rocket engines, a fluid-structural coupling computational methodology with a multi-channel model is developed to obtain 3-demensioanl thermal and structural responses. Heat and mechanical loads are calculated by a validated finite volume fluid-thermal coupling numerical method considering non-premixed combustion processes of propellants. The methodology is subsequently performed on an LOX/methane thrust chamber under cyclic operation. Results show that the heat loads of the thrust chamber wall are apparently non-uniform in the circumferential direction. There are noticeable disparities between different cooling channels in terms of temperature and strain distributions at the end of the hot run phase, which in turn leads to different temperature ranges, strain ranges, and residual strains during one cycle. With the work cycle proceeding, the circumferential localization effect of the residual strain would be significantly enhanced. A post-processing damage analysis reveals that the low-cycle fatigue damage accumulated in each cycle is almost unchanged, while the quasi static damage accumulated in a considered cycle declines until stabilized after several cycles. The maximum discrepancy of the predicted lives between different cooling channels is about 30%.
Keywords:Cyclic plasticity  Damage  Heat transfer  Regenerative cooling  Rocket engine  Service life  Thrust chamber
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号