首页 | 本学科首页   官方微博 | 高级检索  
     

基于试飞数据的航空发动机状态监测与故障诊断
引用本文:潘鹏飞. 基于试飞数据的航空发动机状态监测与故障诊断[J]. 推进技术, 2021, 42(12): 2826-2837
作者姓名:潘鹏飞
作者单位:中国飞行试验研究院
摘    要:在航空发动机飞行试验阶段,发动机技术状态变化快、故障频发,为了实时监控发动机工作参数变化情况,快速及时地预测并诊断发动机故障,本文研究了试飞数据驱动的航空发动机状态监控与故障诊断技术。文章基于实际试飞数据建立了航空发动机ANN-NARX参数预测模型,考虑到建模样本量大、模型结构复杂、训练时间长、输入输出延迟等因素,采用遗传算法对模型的最小数据样本需求和结构进行了改进优化,并利用蒙特卡洛方法确立了参数预测模型的自适应告警门限,同时基于构建奇偶空间残差模型实现了航空发动机典型故障诊断。结果表明:实际试飞中只需有限架次试飞数据的训练学习,即可得到发动机参数预测模型,高压转子转速、压气机后压力、涡轮后总温及滑油总回油温度预测相对误差最大值分别为:1.0%、1.7%、0.2%和1.2%,综合模型建模误差和参数测量误差后的自适应告警门限有效降低了模型预测结果的不确定性,在已有数据样本集上的典型故障识别率达到95.2%。

关 键 词:航空发动机;飞行试验;状态监测;神经网络;故障诊断
收稿时间:2020-09-11
修稿时间:2021-10-10

Flight Data Based Condition Monitoring and Fault Diagnosis of Aero-Engine
PAN Peng-fei. Flight Data Based Condition Monitoring and Fault Diagnosis of Aero-Engine[J]. Journal of Propulsion Technology, 2021, 42(12): 2826-2837
Authors:PAN Peng-fei
Abstract:During flying test life cycle, aircraft engine conditions change greatly and faults have been encountered frequently. There always exist urgent needs about monitoring parameters trending on-line, predicting possible faulty condition and diagnosing the specific type when faulty condition encountered. The problem of condition monitoring and fault diagnosis based on flight test data has been studied in this paper. ANN-NARX parameters predicting model of aero engines has been built based on actual flight test data. Considering large demands on data samples, the complex and large design space of ANN model, consequently long training time and input-output time delaying, the model architectures and minimum sample demands have been optimized based on evolving algorithms. The self-adapting thresholds of predicting model have been set using monte-carlo method. The specific fault diagnosis has been realized by constructing parity space residual model. All models in this paper have been tested through flight data and applied in actual flying test. The monitoring model could be built based on limited flights in actual flying test. The maximum relative error of high-pressure spool speed, pressure in compressor outlet, total temperature in low-pressure turbine outlet and temperature of all returned oil is 1.0%, 1.7%, 0.2% and 1.2% specifically. The model predicting uncertainty could be greatly reduced using adaptive thresholds by considering both modeling error and measurement uncertainty. The ratio of detecting and diagnosing specific faulty type is 95.2% based on test samples, which have been encountered in actual flight condition.
Keywords:Aero engine   flight test   condition monitoring   neural network   fault diagnosis
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号