摘 要: | ![]() 针对发动机气路部件故障,提出了一种基于模型和基于数据驱动的融合诊断方法。采用极端学习机(ELM)实现基于数据驱动的故障诊断。针对ELM随机选择输入层权值和隐含层偏置带来的缺点,采用改进微分进化(IDE)算法以训练样本的均方根误差(RMSE)和输出层权值的范数为评价标准对其进行优化,减少了ELM的隐含层节点数,提高了网络的泛化能力。同时,由于传感器数目的不足,采用基于奇异值分解(SVD)的Kalman(SVD-Kalman)滤波器实现基于模型的部件故障诊断。为了提高航空发动机部件故障诊断的精度,利用改进的迭代约简最小二乘支持向量回归机(IRR-LSSVR)算法对两种算法的估计结果在特征层进行定量融合。仿真结果表明,在发动机稳态状态下,与单独使用基于模型和数据驱动的诊断方法相比,采用特征层融合有效地提高了部件故障诊断的精度和准确率。
|