摘 要: |  本文研究了一种基于卷积注意力机制模块(CBAM)与门控循环单元网络(GRU)结合的CBAM-GRU分类模型,用于非合作通信系统中的自动调制识别技术。将信号预处理后的时域幅度值、相位值以及I/Q值合并,转换为输入采样值矩阵,进入网络进行信号分类识别。使用无线电数据集RadioML2016.10a进行仿真实验,并将CBAM-GRU模型与卷积神经网络(CNN)、长短期记忆网络(LSTM)、GRU、卷积长短时深度神经网络(CLDNN)进行比较。实验结果表明:CBAM-GRU模型的分类识别率达到92.79%,相较于对比模型分别提高了8.52%、1.84%、1.75%、8.61%,比传统的CNN或LSTM模型,在处理信号时能够更有效地捕捉时空特征,从而提高识别精度。

|