首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Portrait of the Nucleus of Comet 67P/Churyumov-Gerasimenko
Authors:Philippe L Lamy  Imre Toth  Björn J R Davidsson  Olivier Groussin  Pedro Gutiérrez  Laurent Jorda  Mikko Kaasalainen  Stephen C Lowry
Institution:(1) Laboratoire d’Astrophysique de Marseille, BP 8, 13376 Marseille Cedex 12, France;(2) Uppsala Observatory, Uppsala, Sweden;(3) Department of Astronomy, University of Maryland, College Park, MD, USA;(4) Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain;(5) Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland;(6) Department of Physics and Astronomy, Queen’s University, Belfast, United Kingdom;(7) Konkoly Observatory, Budapest, Hungary
Abstract:In 2003, comet 67P/Churyumov–Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size–scale free three–dimensional shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally different. The nucleus of comet 67P/Churyumov–Gerasimenko emerges as an irregular body with an effective radius (that of the sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions measured along the principal axis for the two solutions are 4.49–4.75 km, 3.54–3.77 km and 2.94–2.92 km. The nucleus is found to be in principal axis rotation with a period = 12.4–12.7 h. Merging all observational constraints allow us to specify two regions for the direction of the rotational axis of the nucleus: RA = 220°+50° −30° and Dec = −70° ± 10° (retrograde rotation) or RA = 40°+50° -30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function, although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel 1. The definition of the disk–integrated albedo of an irregular body having a strong opposition effect raises problems, and the various alternatives led to a R-band geometric albedo in the range 0.045–0.060, consistent with our present knowledge of cometary nuclei. The active fraction is low, not exceeding ~ 7% at perihelion, and is probably limited to one or two active regions subjected to a strong seasonal effect, a picture coherent with the asymmetric behaviour of the coma. Our slightly downward revision of the size of the nucleus of comet 67P/Churyumov-Gerasimenko resulting from the present analysis (with the correlative increase of the albedo compared to the originally assumed value of 0.04), and our best estimate of the bulk density of 370 kg m−3, lead to a mass of ~ 8 × 1012 kg which should ease the landing of Philae and insure the overall success of the Rosetta mission.
Keywords:solar system  comet  cometary nucleus  67P/Churyumov-Gerasimenko  Rosetta space mission
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号