首页 | 本学科首页   官方微博 | 高级检索  
     

基于核主成分分析的空域复杂度无监督评估
引用本文:张瞩熹,朱熙,朱少川,张明远,杜文博. 基于核主成分分析的空域复杂度无监督评估[J]. 航空学报, 2019, 40(8): 322969-322969. DOI: 10.7527/S1000-3893.2019.22969
作者姓名:张瞩熹  朱熙  朱少川  张明远  杜文博
作者单位:北京航空航天大学综合交通大数据应用技术国家工程实验室,北京 100083;中国人民解放军32751单位;北京航空航天大学综合交通大数据应用技术国家工程实验室,北京 100083;北京航空航天大学前沿科学技术创新研究院,北京 100083;北京航空航天大学综合交通大数据应用技术国家工程实验室,北京 100083;北京航空航天大学交通科学与工程学院,北京 100083;北京航空航天大学综合交通大数据应用技术国家工程实验室,北京 100083;北京航空航天大学电子信息工程学院,北京 100083
基金项目:国家杰出青年科学基金(61425014);国家优秀青年科学基金(61722102);国家自然科学基金(61671031)
摘    要:
空域复杂度评估作为衡量空域运行态势、管制员工作压力的关键手段,是运行调控的基础。由于影响因素众多,不同因素间耦合关联复杂,且标定样本很难获取,空域复杂度的准确评估被公认为航空领域的一个挑战性问题。提出了一种空域复杂度的无监督评估方法。首先通过核主成分分析挖掘原始样本各维度的非线性耦合关系,准确提取能够最大化复杂度评估信息量的主成分,进一步设计了可按需定制的主成分聚类方法,实现了无监督条件下空域复杂度的准确评估,为空域划分、流量管理提供了有效的技术支撑。

关 键 词:空域复杂度  空域运行态势  无监督  核主成分分析  降维  聚类
收稿时间:2019-02-26
修稿时间:2019-03-06

Unsupervised evaluation of airspace complexity based on kernel principal component analysis
ZHANG Zhuxi,ZHU Xi,ZHU Shaochuan,ZHANG Mingyuan,DU Wenbo. Unsupervised evaluation of airspace complexity based on kernel principal component analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 322969-322969. DOI: 10.7527/S1000-3893.2019.22969
Authors:ZHANG Zhuxi  ZHU Xi  ZHU Shaochuan  ZHANG Mingyuan  DU Wenbo
Affiliation:1. National Engineering Laboratory of Big Data Application Technologies of Comprehensive Transportation, Beihang University, Beijing 100083, China;2. Unit 32751 Force of PLA, China;3. Research Institute of Frontier Science, Beihang University, Beijing 100083, China;4. School of Transportation Science and Engineering, Beihang University, Beijing 100083, China;5. School of Electronic and Information Engineering, Beihang University, Beijing 100083, China
Abstract:
Airspace complexity evaluation is a key means to measure the airspace operational situation and the controller workload, providing the basis for the operation optimization. Its accurate evaluation is a challenging problem in the aviation domain due to numerous influencing factors, the complex correlations between factors, and the high difficulty of collecting labelled samples. This paper proposes an unsupervised evaluation method for airspace complexity. Firstly, the kernel principal component analysis is utilized to mine the nonlinear correlations in different sample dimensions, and extract several principal components in which the airspace complexity information is maximized. Furthermore, the principal component clustering which can be customized according to user requirements is designed. The proposed method achieves accurate complexity evaluation capacity under the unsupervised condition, providing effective technical support for air traffic management like airspace configuration and traffic management.
Keywords:airspace complexity  airspace operation situation  unsupervised learning  kernel principal component analysis  dimension reduction  clustering  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号