首页 | 本学科首页   官方微博 | 高级检索  
     检索      

考虑叶片径向和垂直于壁面方向导热的涡轮叶片对流冷却模型研究
引用本文:王伯鑫,赵巍,隋秀明,周庆晖,赵庆军.考虑叶片径向和垂直于壁面方向导热的涡轮叶片对流冷却模型研究[J].推进技术,2020,41(2):390-397.
作者姓名:王伯鑫  赵巍  隋秀明  周庆晖  赵庆军
作者单位:中国科学院工程热物理研究所,中国科学院工程热物理研究所,中国科学院工程热物理研究所,中国科学院工程热物理研究所,中国科学院工程热物理研究所
基金项目:国家重点研发计划(2016YFB0901402)、国家自然科学基金(51776198)
摘    要:为了提高涡轮叶片对流冷却模型预测精度,提出了一种在叶片固壁内同时考虑叶片径向和垂直于壁面方向(法向)导热的二维对流冷却模型。该模型在弦长方向划分多个元素,忽略元素内弦长方向叶片温度变化,在元素内的径向和法向建立二维导热方程作为叶片固壁温度场的控制方程,其边界条件包括叶表燃气绝热温度、燃气侧对流换热系数和叶片叶根、叶顶热流密度等。给出了该模型二维导热方程和边界条件的差分求解方法。以E~3涡轮高压导叶为例,将模型与CFD计算的叶片外壁面温度分布进行了对比。结果表明,该模型在给定冷气量下预测的叶片温度分布变化趋势与CFD相近,最大温度误差不超过6.5%,计算时间与CFD相比缩短了95%,能够快速、准确预测涡轮对流冷却叶片的冷气需求量。

关 键 词:涡轮叶片  对流冷却  初步冷却设计  二维传热模型
收稿时间:2019/3/18 0:00:00
修稿时间:2019/12/20 0:00:00

Investigation on a Convective Turbine Blade CoolingModel Considering Heat Conductivity Both in Radial and Normal Direction to Blade Wall
WANG Bai-xin,ZHAO Wei,SUI Xiu-ming,ZHOU Qing-hui,ZHAO Qing-jun.Investigation on a Convective Turbine Blade CoolingModel Considering Heat Conductivity Both in Radial and Normal Direction to Blade Wall[J].Journal of Propulsion Technology,2020,41(2):390-397.
Authors:WANG Bai-xin  ZHAO Wei  SUI Xiu-ming  ZHOU Qing-hui  ZHAO Qing-jun
Institution:Institute of Engineering Thermophysics, Chinese Academy of Sciences,Institute of Engineering Thermophysics, Chinese Academy of Sciences,,,
Abstract:In this paper, a two-dimensional convective turbine blade cooling model is presented that considers the heat conductivity both in the radial direction and in the direction normal to the blade wall for improved prediction accuracy. This model divides the blade wall into small elements in the chord wise direction, neglecting the temperature variation in that direction. In each element, 2D heat conductivity equation is established in the radial direction and in the direction normal to the blade wall as governing equation for the temperature filed of the blade solid wall. Boundary conditions for the equation include the adiabatic temperature and heat transfer coefficient of the gas-side blade wall, and the heat flux through the blade tip and root. The 2D heat conductivity equations with conditions for the model and the corresponding differential solving method are all provided. This model is then applied to a high-pressure turbine vane of E3. The comparison between the gas-side wall temperature results of the model and CFD is conducted. It shows that with the given coolant mass, the blade gas-side wall temperature distribution predicted by the model is similar to that by the CFD and the maximum error is less than 6.5% with a reduction of 95% in simulation time. It is proved that this model can be employed to obtain the turbine blade convective coolant flow requirement quickly and accurately.
Keywords:Turbine Blade  Convective cooling  Preliminary cooling design  2D heat transfer model
本文献已被 CNKI 等数据库收录!
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号