首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTMAttention网络的短期风电功率预测
引用本文:钱勇生,邵洁,季欣欣,李晓瑞,莫晨,程其玉. 基于LSTMAttention网络的短期风电功率预测[J]. 航空动力学报, 2019, 46(9): 95-100
作者姓名:钱勇生  邵洁  季欣欣  李晓瑞  莫晨  程其玉
作者单位:上海电器科学研究所集团有限公司,上海200063,上海电力大学 电子与信息工程学院,上海200090,上海电力大学 电子与信息工程学院,上海200090,上海电力大学 电子与信息工程学院,上海200090,上海电力大学 电子与信息工程学院,上海200090,上海电力大学 电子与信息工程学院,上海200090
摘    要:提出一种基于LSTMAttention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网络(CNN)提取NWP数据的局部特征,并引入压缩和奖惩网络(SE)模块学习特征权重,利用特征重新标定方式提高网络表示能力;最后,将局部特征和整体特征进行特征融合,通过分类器输出分类结果。利用NOAA提供的美国加利福尼亚州某风电场的数据进行案例分析,证明了所提方法的有效性。试验结果表明,与BP神经网络、自回归积分滑动平均模型(ARIMA)模型和LSTM模型相比,LSTMAttention模型具有更高的预测精度,证明了该方法的有效性。

关 键 词:风电功率预测   LSTM   卷积神经网络   压缩和奖惩网络模块   注意力机制
收稿时间:2019-06-17

ShortTerm Wind Power Forecasting Based on LSTMAttention Network
QIAN Yongsheng,SHAO Jie,JI Xinxin,LI Xiaorui,MO Chen and CHENG Qiyu. ShortTerm Wind Power Forecasting Based on LSTMAttention Network[J]. Journal of Aerospace Power, 2019, 46(9): 95-100
Authors:QIAN Yongsheng  SHAO Jie  JI Xinxin  LI Xiaorui  MO Chen  CHENG Qiyu
Affiliation:Shanghai Electrical Apparatus Research Institute Group Co., Ltd., Shanghai 200063, China,College of Electronics and Information Engineering, Shanghai University of Electric Power,Shanghai 200090, China,College of Electronics and Information Engineering, Shanghai University of Electric Power,Shanghai 200090, China,College of Electronics and Information Engineering, Shanghai University of Electric Power,Shanghai 200090, China,College of Electronics and Information Engineering, Shanghai University of Electric Power,Shanghai 200090, China and College of Electronics and Information Engineering, Shanghai University of Electric Power,Shanghai 200090, China
Abstract:A shortterm wind power forecasting method based on long shortterm memoryattention (LSTMAttention) network was presented. Firstly, the LSTM network was used to extract the feature information of numerical weather prediction (NWP) data, and the attention mechanism was used to effectively analyze the correlation between input and output of the model, so as to obtain more global features of important moments. Secondly, the convolutional neural network (CNN) was used to extract the local features of NWP data, squeezeexcitation (SE) blocks were introduced to learn the feature weights, and the feature recalibration method was used to improve the network representation ability. Finally, local and global features were fused, and the classification results were output by classifier. A case study of a wind farm in California, American provided by National Oceanic and Atmospheric Administration (NOAA) was conducted to demonstrate the effectiveness of the proposed method. The experimental results showed that LSTMAttention model had higher prediction accuracy than BP neural network, autoregressive integrated moving average (ARIMA) model and LSTM model, which proved the validity of the proposed method.
Keywords:wind power forecasting   long shortterm memory   convolutional neural network   squeezeexcitation blocks   attention mechanism
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号