Observed redshifts of transition region/corona lines |
| |
Authors: | P. Brekke |
| |
Affiliation: | (1) Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway |
| |
Abstract: | ![]() Solar UV observations reveal a redshifted emission at transition region temperatures, commonly interpreted as a net downflow of plasma. In earlier investigations the magnitude of the redshift has been found to increase with temperature, reaching a maximum at T=105 K, and then to decrease towards higher temperatures. These observations, mostly from Skylab, suggested no significant shift of the O V line at 1218 Å formed at 2.4×105 K. The variation of the downflow velocity with temperature is, however, uncertain since there are few reliable observations of lines formed at higher temperatures.Using spectrograms from the High Resolution Telescope and Spectrograph — HRTS we find an average net redshift of the O V lines at 1218 Å and 1371 Å at all locations extending from disk center to solar limb. A discrepancy between the observed flow velocity in the two lines is probably caused by uncertainty in the available laboratory wavelength of the intercombination line at 1218 Å (2s21S0-2s2p3P1).The observed shift in O V is compared with corresponding measurements of lines formed at other temperatures (Si IV, C IV, N IV, O IV, and Fe XII). Large variations in the shift are found along the instrument slit. Thus, blueshifts are also observed with the sites of the largest upflow located in the sunspot umbrae and in a quiet region close to an active region. |
| |
Keywords: | Transition Region Corona Mass flow UV Radiation |
本文献已被 SpringerLink 等数据库收录! |
|