首页 | 本学科首页   官方微博 | 高级检索  
     

前缘射流对涡轮导叶吸力面多排气膜孔冷却特性的影响
引用本文:姚春意,朱惠人,李鑫磊,刘存良,郭文,刘松,李世峰. 前缘射流对涡轮导叶吸力面多排气膜孔冷却特性的影响[J]. 推进技术, 2021, 42(3): 620-629
作者姓名:姚春意  朱惠人  李鑫磊  刘存良  郭文  刘松  李世峰
作者单位:西北工业大学 动力与能源学院,西北工业大学 动力与能源学院,西北工业大学 动力与能源学院,西北工业大学 动力与能源学院,中国航发四川燃气涡轮研究院,中国航发四川燃气涡轮研究院,中国航发四川燃气涡轮研究院
基金项目:国家科技重大专项(2017-lll-0001-0025,2017-lll-0003-0027);装备预研中国航发联合基金资助项目(6141B090213)。
摘    要:为了研究前缘射流对吸力面多排气膜孔下游冷却特性的影响,在跨声速风洞中进行了实验并采用热电偶获得了气膜冷却效率和换热系数.叶栅进口雷诺数为2.0×105~4.0×105,出口等熵马赫数为0.95,叶栅前的湍流度<5%.前缘布置6排对冲圆柱孔,质量流量比为2.00%~3.71%,吸力面布置4排圆柱孔,质量流量比为2.02%...

关 键 词:前缘射流  吸力面  气膜冷却效率  换热系数  质量流量比
收稿时间:2019-09-30
修稿时间:2021-01-31

Effects of Leading Edge Injection on the Film Cooling Characteristics of Multirow Cooling Holes on the Turbine Vane Suction Side
YAO Chun-yi,ZHU Hui-ren,LI Xin-lei,LIU Cun-liang,GUO Wen,LIU Song,LI Shi-feng. Effects of Leading Edge Injection on the Film Cooling Characteristics of Multirow Cooling Holes on the Turbine Vane Suction Side[J]. Journal of Propulsion Technology, 2021, 42(3): 620-629
Authors:YAO Chun-yi  ZHU Hui-ren  LI Xin-lei  LIU Cun-liang  GUO Wen  LIU Song  LI Shi-feng
Affiliation:Northwestern Polytechnical University, School of Power and Energy,Northwestern Polytechnical University, School of Power and Energy,,,,,
Abstract:An experiment was carried out in the transonic wind tunnel to investigate the effect of leading edge injection on the cooling characteristics downstream of multirow film cooling holes on the turbine vane suction side. The film cooling effectiveness and heat transfer coefficient were obtained by the thermocouples. The inlet Reynolds number of the cascade ranged from 2.0×105 to 4.0×105 and the exit isentropic Mach number was 0.95, the turbulence intensity upstream of the cascade was less than 5%. Six rows of counter-inclined cylindrical holes were provided on the leading edge and the mass flow ratios ranged from 2.00% to 3.71%. Four rows of cylindrical holes were arranged on the suction side and the mass flow ratios ranged from 2.02% to 3.74%. The experimental results show that without the leading edge injection, the film cooling effectiveness on the suction side first increases then decreases with the mass flow ratio increasing, however, the effect of mass flow ratio on film cooling effectiveness is not pronounced in the presence of leading edge injection. The increased mass flow ratio leads to enhanced heat transfer coefficient on the suction side for all cases. Compared with the cases without leading edge injection, the leading edge injection significantly improves the film cooling effectiveness and slightly reduces the heat transfer coefficient in the area near the hole rows on the suction side. In the rear half of suction side, the leading edge injection markedly enhances the heat transfer coefficient, whereas has little effect on the film cooling effectiveness. In summary, the leading edge injection improves the cooling performance in the vicinity of hole rows on the suction side, however, worsens the cooling performance in the rear half of suction side.
Keywords:Leading edge injection   Suction side   Film cooling effectiveness   Heat transfer coefficient   Mass flow ratio
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号