首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aeroshell design techniques for aerocapture entry vehicles
Authors:R Eric Dyke  Glenn A Hrinda  
Institution:aSwales Aerospace, NASA Langley Research Center, Hampton VA, USA;bNASA Langley Research Center, Hampton VA, USA
Abstract:A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号