首页 | 本学科首页   官方微博 | 高级检索  
     

基于UKF的异类传感器集中式融合算法
引用本文:陈嘉鸿,张新曼,张忠华,韩九强. 基于UKF的异类传感器集中式融合算法[J]. 航天控制, 2008, 26(5)
作者姓名:陈嘉鸿  张新曼  张忠华  韩九强
作者单位:1. 西安交通大学电信学院,西安,710049;中国卫星海上测控部,江苏江阴,214431
2. 西安交通大学电信学院,西安,710049
3. 中国卫星海上测控部,江苏江阴,214431
摘    要:综合考虑航天器跟踪测量中速度和精度的要求,对异类传感器集中式融合问题进行了研究,提出了基于无迹卡尔曼滤波(UKF,Unscented Kalman Filter)和简化的分类数据压缩技术的非线性系统实时集中式融合算法.仿真表明新的算法融合性能优于基于扩展卡尔曼滤波(EKF,Extended Kalman Filter)和扩维技术的并行集中式融合算法.

关 键 词:无迹卡尔曼滤波  集中式融合  异类传感器  数据压缩

UKF-based Centralized Fusion Algorithm for Inhomogeneous Sensors
CHEN Jiahong,ZHANG Xinman,ZHANG Zhonghua,HAN Jiuqiang. UKF-based Centralized Fusion Algorithm for Inhomogeneous Sensors[J]. Aerospace Control, 2008, 26(5)
Authors:CHEN Jiahong  ZHANG Xinman  ZHANG Zhonghua  HAN Jiuqiang
Abstract:Considering of precision and speed in spacecrafts tracking,the centralized fusion algorithms for inhomogeneous sensors are studied.A new real-time algorithm based on unscented Kalman filter(UKF) and simplified classifying data-compression(DC) technology is proposed for nonlinear multi-sensor data fusion.In view of real time precision,the new algorithm is suitable for multi-sensor single-target tracking,especially for the local center of space measuring.The simulation results show that the performance of the new algorithm is superior to the extended Kalman filter(EKF) and expanded-dimension(ED) technology based parallel centralized fusion algorithms.
Keywords:Unscented Kalman Filter  Centralized fusion  Inhomogeneous sensors  Data compression
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号