首页 | 本学科首页   官方微博 | 高级检索  
     

航空发动机机匣电子束焊接变形模拟分析与优化
引用本文:贺笃鹏,张占英,杨丽,邹伟龙,朱小武,陈源宏. 航空发动机机匣电子束焊接变形模拟分析与优化[J]. 航空动力学报, 2021, 36(6): 1263-1272. DOI: 10.13224/j.cnki.jasp.2021.06.015
作者姓名:贺笃鹏  张占英  杨丽  邹伟龙  朱小武  陈源宏
作者单位:中国钢研科技集团有限公司数字化研发中心,北京100081;航发伊萨(北京)科技发展有限公司,北京100094;中国航空发动机集团有限公司西安航空发动机有限公司,西安710021;中国钢研科技集团有限公司数字化研发中心,北京100081;钢铁研究总院战略研究中心,北京100081;航发伊萨(北京)科技发展有限公司,北京100094
基金项目:国家重点研发计划项目(2017YFB0701801)
摘    要:为了对焊接变形进行预测与控制,建立了焊接接头的弹塑性有限元模型,并对电子束热源模型进行了校核,获得了接头焊接位置的塑性应变区域大小;建立了风扇叶片机匣3D壳单元有限元模型,并采用固有应变法对机匣焊接变形进行了模拟计算,获取了焊接过程的变形分布,通过实测机匣变形量并与仿真结果进行对标,验证了模型的准确性;通过对风扇叶片机...

关 键 词:薄壁机匣  焊接变形  电子束焊接  固有应变法  SYSWELD软件
收稿时间:2021-01-12

Simulation analysis and optimization of electron beam welding deformation of aero-engine casing
HE Dupeng,ZHANG Zhanying,YANG Li,ZOU Weilong,ZHU Xiaowu,CHEN Yuanhong. Simulation analysis and optimization of electron beam welding deformation of aero-engine casing[J]. Journal of Aerospace Power, 2021, 36(6): 1263-1272. DOI: 10.13224/j.cnki.jasp.2021.06.015
Authors:HE Dupeng  ZHANG Zhanying  YANG Li  ZOU Weilong  ZHU Xiaowu  CHEN Yuanhong
Affiliation:1.Material Digital Research and Development Center,China Iron and Steel Research Institute Group,Beijing 100081,China2.Aero Engine Corporation of China-ESI Beijing ,Technology Company Limited,Beijing 100094,China3.Xi’an Aero-Engine Limited,Aero Engine Corporation of China,Xi’an 710021,China4.Strategic Research Center,Central Iron and Steel Research Institute,Beijing 100081,China
Abstract:In order to predict and control the welding deformation, the elastoplastic finite element model of the welded joint was established, and heat source model of the electron beam was checked to obtain the size of the plastic strain area of the welded joint. Then, the 3D shell element finite element model of the fan blade casing was established, and the welding deformation of the casing was simulated by using the inherent strain method, so as to obtain the deformation distribution during the welding process. The accuracy of the model was verified by measuring the deformation of the casing and comparing with the simulation results. Finally, by optimizing the welding sequence and welding pool width, the optimal scheme of controlling welding deformation was obtained through simulation calculation. The results showed that the average deformation error between simulation and actual measurement was only 10.3%. The 3D shell element finite element model of the center plane based on the inherent strain method was suitable for the deformation prediction of electron beam welding of large and complex thin-walled parts. The width of the molten pool on the weld was reduced to 2.7 mm, and the average radial deformation after welding was reduced by 30%. Controlling the weld width can significantly reduce the radial shrinkage and deformation of the casing, but the optimization of welding sequence has poor effect on deformation control.
Keywords:thin wall casing  welding deformation  electron beam welding  inherent response method  SYSWELD software
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号