首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的冰形特征参数预测
引用本文:柴聪聪, 易贤, 郭磊, 王俊. 基于BP神经网络的冰形特征参数预测[J]. 实验流体力学, 2021, 35(3): 16-21. doi: 10.11729/syltlx20200016
作者姓名:柴聪聪  易贤  郭磊  王俊
作者单位:1. 电子科技大学 计算机科学与工程学院, 成都 611731; 2. 中国空气动力研究与发展中心 结冰与防/除冰重点实验室, 四川 绵阳 621000
基金项目:国家自然科学基金11472296
摘    要:

机翼结冰影响了飞机飞行的气动特性,严重时将会引起事故,对冰形特征参数进行预测对翼型气动特性研究以及后续防除冰措施具有重要的意义。本文利用BP神经网络,建立翼型冰形特征参数预测模型,并采用k折交叉验证进行网络结构选择,以气象与飞行条件作为输入,结冰极限、冰角高度和角度等冰形特征参数作为输出。
结果表明:预测的冰形特征参数(除下冰角高度外)与数值结果相对误差低于5%,证明该方法具有较好的预测效果。




关 键 词:机翼结冰   冰形特征参数   神经网络   k折交叉验证
收稿时间:2020-02-12
修稿时间:2020-04-18
本文献已被 万方数据 等数据库收录!
点击此处可从《实验流体力学》浏览原始摘要信息
点击此处可从《实验流体力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号