摘 要: | 最小熵解卷积(MED)是旋转机械故障诊断领域广泛应用的有效方法,它可以从噪声中提取微弱的故障冲击成分。然而它的有效性依赖于滤波长度的选取,目前,针对MED滤波长度的自动选取并没有明确有效的方法,往往需要人为经验选择。因此,在MED的算法基础上,通过结合自相关函数,提出了一种MED最优滤波长度选择的新方法,该方法构建了一个能量判定标准来衡量输出信号的周期性,从而自适应地确定MED的最优的滤波长度以提升微弱故障信号中的周期脉冲成分,避免MED方法容易出现最大化单一随机脉冲现象的发生。该方法应用于滚动轴承故障微弱冲击特征提取,并利用两个实例进行了有效性验证:基于辛辛那提试验中心的滚动轴承全寿命疲劳加速试验;带机匣的航空发动机转子试验器模拟远离轴承振动源的故障试验。结果表明,所提方法可以消除传递路径影响,提升微弱冲击周期性特征,并且与最大相关峭度解卷积(MCKD)方法相比,诊断结果更具优势。
|