首页 | 本学科首页   官方微博 | 高级检索  
     

涡轴发动机非线性模型预测控制
引用本文:姚文荣,孙健国. 涡轴发动机非线性模型预测控制[J]. 航空学报, 2008, 29(4): 776-780
作者姓名:姚文荣  孙健国
作者单位:南京航空航天大学,能源与动力学院,江苏,南京,210016
基金项目:国家自然科学基金,航空支撑科技基金
摘    要: 对涡轴发动机进行了非线性模型预测控制(NMPC)研究,设计了非线性模型预测,该控制器主要包括3个方面:预测模型、滚动优化和反馈校正。利用神经元网络模型预测涡轴发动机动态响应过程,得到预测模型;运用序列二次规划(SQP)优化算法进行发动机的在线滚动优化,得到发动机的燃油控制量;根据神经元网络模型与实际发动机对象的输出误差,对控制器的指令信号进行了反馈校正。最后进行了仿真实验,与常规串级PID控制相比较,非线性模型预测控制器的超调量从2.2%降低到0.8%,响应时间从6 s降低到2 s,具有很好的控制品质。

关 键 词:涡轴发动机  非线性模型预测控制  SQP  神经元网络模型  反馈校正  

Nonlinear Model Predictive Control for Turboshaft Engine
Yao Wenrong,Sun Jianguo. Nonlinear Model Predictive Control for Turboshaft Engine[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 776-780
Authors:Yao Wenrong  Sun Jianguo
Affiliation:College of Energy and Power Engineering, Nanjing University of Aeronautics and  Astronautics
Abstract:A controller of a turboshaft engine is designed by the nonlinear model predictive control(NMPC) method.The model predictive control system is mainly comprised of three parts: a predictive model,its online optimization and feedback correction.A neural network model is used to predict the dynamic response of the turboshaft engine and generate the predictive model of the NMPC;the sequential quadratic programming(SQP) optimization algorithm is used to optimize the fuel flow of the turboshaft engine online;the error between the neural network model output and the real engine output is used to correct by feedback,the reference of the controller.Finally,a digital simulation is performed,which shows that compared with the serial PID controller the overshoot of the NMPC controller is reduced from 2.2% to 0.8%,and the response time is reduced from 6 s to 2 s.So the NMPC controller has better control quality.
Keywords:SQP
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号