首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aperture error mitigation via local-state estimation for frequency-based emitter location
Authors:Wu  NE Fowler  ML
Institution:Dept. of Electr. & Comput. Eng., State Univ. of New York, Binghamton, NY, USA;
Abstract:This paper considers the problem of locating a stationary coherent emitter via a single moving platform making frequency measurements in the presence of aperture state uncertainty. It is shown that the estimated emitter location is most sensitive to the receiving aperture velocity uncertainty. The required aperture velocity accuracy is determined through a noninfinitesimal perturbation analysis. A solution to location accuracy enhancement with a minimal hardware addition is attempted. It is shown that this can be achieved by mounting a high-resolution tri-axis microelectromechanical systems (MEMS) accelerometer at the aperture to measure its velocity, which can deviate significantly from that estimated by the on-board navigation system. The Doppler shifts of the GPS signal carrier frequency, whenever it can be acquired through the aperture, are also considered as a way to aid the aperture velocity measurement. A decentralized, federated processing method for the aperture velocity estimate referenced at the aperture, integrating all measurement data, is presented. An upper bound for the error of aperture velocity estimate is derived. The potential for significant accuracy enhancement for emitter location is demonstrated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号