首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Large eddy simulation of turbulent diffusion flame combustion using a conserved scalar methodology
Authors:KWang  ZYang and J J McGuirk
Institution:Department of Aeronautical and Automotive Engineering Loughborough University Loughborough, Leicestershire, LE11 3TU, UK
Abstract:The present paper describes an LES prediction of turbulent diffusion flame combustion in a simplifled axi-symmetric combustor geometry.The calculations are carried out using a well-tested finite volume incompressible LES code which has been modified to handle variable density and reacting flows.The basic mixture fraction conserved scalar method is.used with the chemical state relationships described by fast chemistry.The turbulence-chemistry interaction is modelled by a sub-grid PDF method and the PDF is assumed to follow a Beta-function shape.The LES predictions have been time-averaged over 3.5 flow-through times to generate the mean radial profiles of mixture fraction,product mass fraction,temperature,axial velocity and axial Fins.The agreement of the LES predictions with the experimental data is good for all the above quantities at four different axial positions with largest differences at the first measurement plane.The LES method also provides information on the unsteady nature of turbulent diffusion combustion.For turbulent reacting flows with large density ratio,it was found necessary to use a relaxation method in order to remove unphysical high-frequency fluctuations and to maintain numerical stability.
Keywords:large eddy simulation(LES)  turbulent diffusion flam  conserved scalar methodology  relaxation method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号