首页 | 本学科首页   官方微博 | 高级检索  
     

TDI-CCD遥感图像条带噪声的消除
引用本文:赵变红, 何斌, 杨利红, 陶明慧, 任建岳. TDI-CCD遥感图像条带噪声的消除[J]. 空间科学学报, 2012, 32(2): 298-304. doi: 10.11728/cjss2012.02.298
作者姓名:赵变红  何斌  杨利红  陶明慧  任建岳
作者单位:1.中国科学院长春光学精密机械与物理研究所 长春 130033;;2.中国科学院研究生院 北京 100049
基金项目:国家高技术研究发展计划项目资助
摘    要:针对TDI-CCD遥感图像固有条带噪声的灰度值在原始信息中变化比较缓慢的特 点及小波变换对奇异点检测的优越性, 提出了一种快速傅里叶变换和小波变换 相结合的方法来确定条带噪声频率点所在的位置, 采用改进的陷波滤波器对条 带噪声的频率成分进行消除. 另外, 提出一种基于提升小波变换的改进阈值 函数法, 用以消除图像的条带噪声. 实验结果表明, 在消除条带噪声方面, 改 进的陷波法优于改进的阈值函数法, 而改进的阈值函数法优于硬阈值函数和软 阈值函数法. 利用改进的陷波法消除条带噪声后, 图像的质量得到提高, 其PSNR达到46.4181dB, NMSE减小到0.00007, 相对基于提升小波变换的 几种阈值函数法, PSNR提高了3~4dB, 而NMSE则减小了 0.00007~0.00011. 本文提出的方法能较好地消除遥感图像的条带噪声, 同时能够较好地保持原图像的特征, 具有可行性.

关 键 词:条带噪声   FFT   小波变换   改进的陷波滤波器   提升小波变换   改进的阈值函数
收稿时间:2010-08-21
修稿时间:2010-11-01

Destriping for TDI-CCD Remote Sensing Images
ZHAO Bianhong, HE Bin, YANG Lihong, TAO Minghui, REN Jianyue. Destriping for TDI-CCD Remote Sensing Images[J]. Chinese Journal of Space Science, 2012, 32(2): 298-304. doi: 10.11728/cjss2012.02.298
Authors:ZHAO Bianhong  HE Bin  YANG Lihong  TAO Minghui  REN Jianyue
Affiliation:1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033;;2. Graduate University of the Chinese Academy of Science, Beijing 100049
Abstract:Based on the characteristic of striping noise in TDI-CCD images,a new destriping noise technique which combines FFT with wavelet transform to search the frequency point of the striping noise is presented.The improved notch filter is selected to eliminate the striping noise. In addition,an improved threshold function based on lifting wavelet transform is used to eliminate the stripes.Experiment shows that the method of improved notch filter is superior to the improved threshold function while the improved threshold function is superior to the hard and the soft threshold function.After destriping using the improved notch filter,the quality of image is enhanced.The PSNR of the destriping image processed by improved notch filter is increased to 46.4181 dB and the NMSE is decreased to 0.00007.Compared to the methods of threshold function based on lifting wavelet transform,the PSNR of destriped image is improved by 3~4 dB and the NMSE is reduced by 0.000 07~0.00011.The method of improved notch filter which combined FFT with wavelet transform and the methods of threshold function based on lifting wavelet transform can eliminate the striping noise while preserve the characteristic of the original image,so the several methods are of feasibility.
Keywords:Striping noise  Fast Fourier Transformation (FFT)  Wavelet transform  Improved notch filter  Lifting wavelet transform  Improved threshold function
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空间科学学报》浏览原始摘要信息
点击此处可从《空间科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号