首页 | 本学科首页   官方微博 | 高级检索  
     

航空发动机神经网络反步控制方法
引用本文:潘慕绚,黄金泉,殷石. 航空发动机神经网络反步控制方法[J]. 航空动力学报, 2009, 24(10): 2344-2348
作者姓名:潘慕绚  黄金泉  殷石
作者单位:南京航空航天大学能源与动力学院, 南京 210016
摘    要:针对航空发动机非线性和不确定性的特点,提出了一种基于神经网络的反步控制方法.采用径向基神经网络估计未知系统方程,并用一种平滑切换法有效避免了控制器奇异问题.反步法的设计基于Lya-punov稳定性原理,保证了闭环系统一致渐近有界.最后针对某型涡扇发动机非线性模型设计了高压转速控制器,仿真结果验证了该方法的有效性. 

关 键 词:航空发动机  非线性系统  神经网络  反步控制
收稿时间:2008-10-09
修稿时间:2009-03-24

Backstepping control strategy for aero-engine using neural networks
PAN Mu-xuan,HUANG Jin-quan and YIN Shi. Backstepping control strategy for aero-engine using neural networks[J]. Journal of Aerospace Power, 2009, 24(10): 2344-2348
Authors:PAN Mu-xuan  HUANG Jin-quan  YIN Shi
Affiliation:College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:Abstract: A Backstepping control strategy based on neural network is presented for nonlinearity and uncertainty of aeroengine. RBF neural network is used to estimate the equations of the unknown system, and a smooth-switching algorithm is proposed to avoid singularity phenomenon. Using Lyapunov stability analysis, the uniformly ultimately boundedness of closed-loop systems is proven.Finally ,the compressor speed controller is designed based on a nonlinear model of some turbofan engine. The simulation results illustrate the effectiveness of the proposed approach.
Keywords:aerospace propulsion system   aeroengine   nonlinear system   neural network   backstepping control
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号