首页 | 本学科首页   官方微博 | 高级检索  
     

融合机床精度与工艺参数的铣削误差预测模型
引用本文:熊青春,王家序,周青华. 融合机床精度与工艺参数的铣削误差预测模型[J]. 航空学报, 2018, 39(8): 421713-421713. DOI: 10.7527/S1000-6893.2018.21713
作者姓名:熊青春  王家序  周青华
作者单位:1. 四川大学 空天科学与工程学院, 成都 610065;2. 成都飞机工业(集团)有限责任公司, 成都 610092
基金项目:国家科技重大专项(2015ZX04001-002);航空工业产学研专项(CXY2013CD36)
摘    要:
为弥补现有五轴联动数控铣床加工飞机结构件的加工精度评估系统的不足,提出利用机床精度检测数据和零件特征及其工艺参数来构建评估指标体系,基于BP神经网络建立了飞机结构件加工误差预测模型。通过完成训练的网络权值分布,计算出各输入指标对最后评估结果的影响,并通过实例分析检验了模型的可靠性。结果表明,经BP神经网络模型训练得到的结果和样本零件的三坐标测量机测量数据基本吻合,选取的评价指标具有有效性。该评估模型能够有效地融合机床精度检测数据和零件特征及其加工工艺参数,对飞机结构件的铣削加工误差进行预测。

关 键 词:数控铣床  飞机结构件  加工误差预测  BP神经网络  工艺参数  
收稿时间:2017-09-01
修稿时间:2018-05-28

Prediction model of machining errors based on precision and process parameters of machine tools
XIONG Qingchun,WANG Jiaxu,ZHOU Qinghua. Prediction model of machining errors based on precision and process parameters of machine tools[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 421713-421713. DOI: 10.7527/S1000-6893.2018.21713
Authors:XIONG Qingchun  WANG Jiaxu  ZHOU Qinghua
Affiliation:1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;2. Chengdu Aircraft Industry(Group) Co., Ltd., Chengdu 610092, China
Abstract:
To overcome the deficiency of machining accuracy evaluation system of five-axis NC milling machine in processing aircraft structural parts, an evaluation system is constructed using machine tool precision detection data, characteristics structural parts and their machining parameters. Based on the BP neural network, a prediction model for machining errors of five-axis NC milling machine is built up. The influence of each input index on the evaluation result is calculated through weight distribution of the trained network, and effectiveness of the model is verified by an example. It is shown that the results obtained by the BP neural network model are in good agreements with those by the coordinate measuring machine, demonstrating the effectiveness of those selected evaluation indexes. The prediction model can effectively evaluate the processing accuracy of the five-axis NC milling machine by combining the machine tool precision detection data, characteristics of the parts and process parameters.
Keywords:CNC milling machine  aircraft structural part  prediction of machining error  BP neural network  process parameter  
本文献已被 CNKI 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号