摘 要: | 为满足临近空间动能拦截器姿态控制快速性、准确性和鲁棒性的要求,设计了一种自适应神经反演姿态控制器。首先,建立了姿控发动机侧喷干扰模型,并推导了包含质心漂移、参数摄动和外界干扰的三通道强耦合模型;其次,设计了自适应神经反演姿态控制器,为提高控制精度,采用径向基函数(RBF)神经网络对各个通道的不确定项进行估计和补偿,并基于最小学习参数的思想,将神经网络学习参数拟合为一个参数,提高了RBF计算效率,保证了估计的实时性。最后,采用伪速率(PSR)脉冲调制器将设计的连续控制律转化为脉冲控制律,实现了拦截器的变推力控制,并克服了脉冲脉宽调制(PWPF)调制器相位滞后问题。数字仿真表明,所设计的控制器收敛速度快,控制精度高,对强扰动具有鲁棒性。
|