首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical and 1-D numerical investigation on a valve/valveless air-breathing pulse detonation engine
Institution:1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China;2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:The important operating characteristics of pulsed Pressure Gain Combustion (PGC) propulsion are the pressure gain of the combustor component and the propulsive performance gain of the engine. A ramjet-type valve/valveless air-breathing pulsed detonation engine with a supersonic internal compression inlet is investigated. Based on an ideal thermal cycle, the ideal equivalent pressure ratios (πcb) of the Pulsed Detonation Combustor (PDC) are obtained theoretically which are directly related with the propulsive performance of the engine. By introducing an orifice loss model into the cycles, the critical pressure drop ratios through the orifice for the PDC achieving pressure gain and the engine achieving thrust gain are studied. More influencing factors are investigated by the use of a one-dimensional (1-D) numerical simulation model. The operating characteristics of the pulse detonation engine are investigated with changes of the valve type, the inlet/outlet area ratio of the PDC, the nozzle area ratio, and flight conditions. All these factors can affect πcb of the PDC, and πcb can be optimized by changing the geometry of the engine. The most important influence parameter is the valve type. When using an orifice-type aerodynamic valve, simulation results show that the PDC cannot achieve the pressure gain characteristics. When a supersonic internal compression inlet is introduced to the engine, whether the Pulse Detonation Engine (PDE) can achieve thrust gain comparable with that of an ideal Brayton cycle engine not only is related to the pressure gain of the combustor, but also needs to optimize the engine structure to reduce the total pressure loss.
Keywords:Detonation  Pressure gain characteristics  Propulsive performance  Supersonic internal compression inlet  Valve/valveless  Thermal cycle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号