首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MESSENGER's use of solar sailing for cost and risk reduction
Institution:1. The Johns Hopkins University Applied Physics Laboratory, United States;2. KinetX, Inc., United States;1. Solar System Missions Division, ESA/ESTEC, Noordwijk, Netherlands;2. Office for Support to New Member States, ESA/ESTEC, Netherlands;3. Science Payload Instrument Section, ESA/ESTEC, Netherlands;1. University of Basilicata, School of Engineering, 10, Ateneo Lucano Street, 85100 Potenza, Italy;2. National Research Council, Institute of Methodologies for Environmental Analysis (IMAA), c/da S.Loja, 85050 Tito Scalo (PZ), Italy;1. Science and Technology on Aerospace Flight Dynamics Laboratory, Beijing 100094, China;2. Beijing Aerospace Control Center, Beijing 100094, China;1. Institute of Space and Astronautical Science, Sagamihara, Kanagawa 252 5210, Japan;2. Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan;3. Hokkaido University, Hokkaido, Japan;4. Senshu University, Tokyo, Japan;5. University of Tokyo, Tokyo, Japan;7. Okayama University, Okayama, Japan
Abstract:The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission used six planetary gravity assists in order to enable capture into orbit about Mercury. A key element of MESSENGER's successful trajectory was achieving the proper gravity assist from each planetary flyby. The criticality of the MESSENGER gravity assists levied tight accuracy requirements on the planetary-flyby targeting. Major errors could have precluded Mercury orbit insertion or required modifications to the trajectory that increased mission complexity, cost, and risk by requiring additional Mercury flybys and extending mission duration. Throughout the mission, MESSENGER modified its strategy for achieving accurate planetary flybys. By using solar sailing, the MESSENGER team was able to eliminate all of the flyby approach maneuvers without sacrificing flyby accuracy, thereby saving mission ΔV margin. The elimination of these approach maneuvers also markedly reduced mission risk, as these approach maneuvers were nominally planned during a time of heightened sensitivity to errors and precluded unique flyby science opportunities. The paradigm shift used by MESSENGER may be useful for other interplanetary missions, particularly if their trajectories require gravity assists in the inner solar system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号