首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design and testing of a roto-translational shutter mechanism for planetary operation
Institution:1. Politecnico di Milano, Polo Territoriale di Lecco, Via M. d′Oggiono 18/a, 23900 Lecco, Italy;2. Micos Engineering GmbH, Dübendorf (ZH), Switzerland;1. University of Basilicata, School of Engineering, 10, Ateneo Lucano Street, 85100 Potenza, Italy;2. National Research Council, Institute of Methodologies for Environmental Analysis (IMAA), c/da S.Loja, 85050 Tito Scalo (PZ), Italy;1. Institute of Space and Astronautical Science, Sagamihara, Kanagawa 252 5210, Japan;2. Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan;3. Hokkaido University, Hokkaido, Japan;4. Senshu University, Tokyo, Japan;5. University of Tokyo, Tokyo, Japan;7. Okayama University, Okayama, Japan;1. Solar System Missions Division, ESA/ESTEC, Noordwijk, Netherlands;2. Office for Support to New Member States, ESA/ESTEC, Netherlands;3. Science Payload Instrument Section, ESA/ESTEC, Netherlands
Abstract:This work describes the design and testing of a shutter mechanism for a miniaturized infrared spectrometer developed for the ESA ExoMars Pasteur mission. Unlike most usual cover mechanisms, the conceived one provides a roto-translational motion. This feature allows the sealing of the interferometer main entrance window from dust contamination, in addition to the usual function of shuttering the instrument field of view. Although this characteristic is strongly desired because it avoids dust deposition and optics contamination while the instrument is not operating, it makes the mechanism design significantly more complex. Moreover, challenging design constraints were faced: the mass budget allowed for no more than 30 g allocation, the expected working thermal range extended down to −80 °C and high vibration levels with an acceleration peak of 670 m/s2 were predicted during Mars landing. To complete the picture, the mechanism cover was required to provide also a calibration target for the 2–25 μm spectral range of the spectrometer. The resulting system is made by a calibrating/shutter cover moved by a purposely designed out of plane cams system which provides the desired motion. A mechanism mockup was assembled and successfully tested in the predicted thermal and mechanical environments.
Keywords:Shutter mechanism  Calibration mechanism  Roto-translational motion  Mars exploration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号