首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cosmic-ray lifetime in the galaxy: Experimental results and models
Authors:J A Simpson  M Garcia-Munoz
Institution:1. Enrico Fermi Institute, University of Chicago, 60637, Chicago, IL, USA
Abstract:The containment lifetime of the cosmic radiation is a crucial parameter in the investigation of the cosmic-ray origin and plays an important role in the dynamics of the Galaxy. The separation of the cosmic-ray Be isotopes achieved by two satellite experiments is considered in this paper, and from the measured isotopic ratio between the radioactive 10Be (half-life = 1.5 × 106 yr) and the stable 9Be, it is deduced that the cosmic rays propagate through matter with an average density of 0.24 ± 0.07 atoms cm-3, lower than the traditionally quoted average density in the galactic disk of 1 atom cm-3. This paper reviews the implications of this result for the cosmic-ray age mainly in the context of two models of confinement and propagation: the homogeneous model, normally identified with confinement to the galactic gaseous disk, and a diffusion model in which the cosmic rays extend into a galactic halo. The propagation calculations use:
  1. a newly deduced cosmic-ray pathlength distribution.
  2. a self-consistent model of solar modulation.
  3. an up-to-date set of fragmentation cross sections.
The satellite results and their implications are compared with the information on the cosmic-ray age derived from other cosmic-ray radioactive nuclei and the measured differential energy spectrum of high-energy electrons. It is a major conclusion of this paper that in a homogeneous model the cosmic-ray age is 15(+7, -4) million years, i.e., about a factor 4 longer than early estimates based on the abundances of the light nuclei Li, Be, and B and a nominal interstellar density of 1 atom cm -3. The lifetime is even longer when the satellite results are applied to a diffusion halo model. The deduced traversed matter density, together with other astrophysical considerations, suggest the population of a galactic halo by the cosmic rays.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号