首页 | 本学科首页   官方微博 | 高级检索  
     检索      


XMM-Newton observations of the Mouse,SLX 1744–299 and SLX 1744–300
Institution:1. ISAS/JAXA, 3-1-1, Yoshinodai, Sagamihara, Kanagawa, Japan;2. The Pennsilvania State University, 525 Davey Laboratory, University Park, PA 16802, USA;3. Leicester University, University Road, Leicester LE1 7RH, UK;4. Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, Japan;1. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-70, Cambridge, MA 02138, USA;2. Jansky Fellow, National Radio Astronomy Observatory, and Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-70, Cambridge, MA 02138, USA
Abstract:We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号