基于GRA-IPSO-SVM的航材携行需求预测研究 |
| |
作者姓名: | 李黄琪 蔡开龙 |
| |
作者单位: | 南昌航空大学,南昌航空大学 |
| |
基金项目: | 空装重点项目(KJ2019A030138) |
| |
摘 要: | 异地执行飞行任务中航材需求的准确预测是做好携行保障的主要内容之一,为此提出灰色关联度(GRA)与改进的粒子群算法(IPSO)及支持向量机(SVM)相结合的航材预测方法。首先运用GRA 对航材携行需求的影响因素进行分析;其次引入活性因子和非线性惯性系数改进粒子群算法,并通过IPSO 对SVM 参数进行寻优;最后使用优化后的SVM 模型预测航材需求。 结果表明:GRA-IPSO-SVM 方法预测结果的均方根误差比PSO-SVM 方法下降0.16,平均绝对百分比误差下降2.18%,且预测时间减少了0.7 s。
|
关 键 词: | 航材、灰色关联度、支持向量机、改进粒子群算法、需求预测 |
收稿时间: | 2021-12-21 |
修稿时间: | 2022-02-20 |
|
| 点击此处可从《航空工程进展》浏览原始摘要信息 |
|
点击此处可从《航空工程进展》下载免费的PDF全文 |
|