首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLOv5的红外目标检测算法
引用本文:林健,张巍巍,张凯,杨尧. 基于YOLOv5的红外目标检测算法[J]. 飞控与探测, 2022, 0(3): 63-71
作者姓名:林健  张巍巍  张凯  杨尧
作者单位:西北工业大学 无人系统技术研究院;上海航天控制技术研究所
基金项目:上海航天科技创新基金(SAST2019-081)
摘    要:针对红外图像的特点,提出了一种YOLOv5-IF算法,采用基于残差机制的特征提取网络,实现了不同特征层之间信息的高效交互,能够得到更丰富的目标语义信息。通过改进YOLOv5的检测方案,增加更大尺度的检测头,有效提升了红外图像中小目标的检测概率。针对计算平台资源有限、算法实时性要求高等问题,设计了Detection Block模块,并由此构建了特征整合网络,该模块不仅能提升算法检测精度,还可有效缩减模型参数量。在FLIR红外自动驾驶数据集上,该算法的平均准确率(mAP)为74%,参数量仅19.5MB,优于现有算法。

关 键 词:红外图像  YOLO算法  深度学习  目标检测  特征整合

Infrared Target Detection Based on YOLOv5
LIN Jian,ZHANG Weiwei,ZHANG Kai,YANG Yao. Infrared Target Detection Based on YOLOv5[J]. FLIGHT CONTROL & DETECTION, 2022, 0(3): 63-71
Authors:LIN Jian  ZHANG Weiwei  ZHANG Kai  YANG Yao
Affiliation:Unmanned System Research Institute, Northwestern Polytechnical University;Shanghai Aerospace Control Technology Institute
Abstract:According to the characteristics of infrared images, a YOLOv5-IF method is proposed. The feature extraction network based on the residual mechanism is used to realize the efficient interaction of information between different feature layers and obtain richer target semantic information. By improving the detection scheme of YOLOv5 and adding a larger-scale detection head, the detection probability of small and medium targets in infrared images is effectively improved. Aiming at the problems of limited computing platform resources and real-time demand, the Detection Block module is designed, and the feature integration network is constructed. This module can not only improve the detection accuracy of the method, but also effectively reduce the number of model parameters. On FLIR infrared automatic driving data set, the average accuracy of the proposed method is 74 %, and the parameter is only 19.5 MB, which is better than the existing methods.
Keywords:Infrared image   YOLO   deep learning   target detection   feature integration
点击此处可从《飞控与探测》浏览原始摘要信息
点击此处可从《飞控与探测》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号