首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包分析与多核学习的滚动轴承故障诊断
作者姓名:郑红  周雷  杨浩
作者单位:1. 北京航空航天大学自动化科学与电气工程学院, 北京 100191;
摘    要:为了更准确地诊断滚动轴承故障,提出了一种基于小波包分析与多核学习的滚动轴承故障诊断方法.该方法首先对振动信号进行3层小波包分解,将振动信号分解为不同频带的信号,提取各频带的相对能量特征,构建特征向量;然后采用多核学习算法从训练样本集中学习核函数与分类器;最后使用训练出的分类器识别滚动轴承故障类型.为了验证方法的有效性,进行了滚动轴承故障诊断实验,实验结果表明该方法的故障诊断准确率达到98.25%,与传统的基于小波包与支持向量机的滚动轴承故障诊断方法相比,其故障诊断准确率更高,同时由于避免了核函数的选择问题,该方法更便于实际应用. 

关 键 词:滚动轴承   故障诊断   小波包   多核学习   故障识别
收稿时间:2014-04-24
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号