基于模糊信息粒化和优化支持向量机的氧化铝陶瓷超声磨削力趋势预测 |
| |
作者姓名: | 赵明利 袁一鸣 李博涵 聂立新 |
| |
作者单位: | 河南理工大学机械与动力工程学院,焦作 454000,河南理工大学机械与动力工程学院,焦作 454000,河南理工大学机械与动力工程学院,焦作 454000,河南理工大学机械与动力工程学院,焦作 454000 |
| |
基金项目: | 国家自然科学基金(E51175153);河南理工大学博士基金(B2016-27) |
| |
摘 要: | 为实现超声磨削氧化铝陶瓷中磨削力变化趋势的预测,提出了一种基于模糊信息粒化和支持向量机相结合的方法。首先进行氧化铝陶瓷超声磨削试验,然后利用模糊信息粒化方法对试验获得的磨削力进行粒化处理,并将人工免疫系统算法和粒子群算法进行并联混编构成人工免疫系统粒子群算法(AISPSO),接着建立非线性回归支持向量机预测模型并对模糊粒子进行预测,并通过AISPSO算法优化支持向量机预测模型,最后获得超声磨削氧化铝陶瓷中磨削力的变化趋势和变化范围。结果表明:该方法可以有效实现超声磨削中磨削力的变化趋势及变化范围预测,且预测未来5组数据变化范围的误差在10%以内,这为通过磨削力变化调整工艺参数以获得更好的加工表面提供了新的思路。
|
关 键 词: | 模糊信息粒化 人工免疫系统 粒子群算法 支持向量机 磨削力预测 |
收稿时间: | 2019-10-30 |
修稿时间: | 2020-07-21 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《宇航材料工艺》浏览原始摘要信息 |
|
点击此处可从《宇航材料工艺》下载免费的PDF全文 |
|