首页 | 本学科首页   官方微博 | 高级检索  
     

混沌多精英鲸鱼优化算法
引用本文:汤安迪,韩统,徐登武,谢磊. 混沌多精英鲸鱼优化算法[J]. 北京航空航天大学学报, 2021, 47(7): 1481-1494. DOI: 10.13700/j.bh.1001-5965.2020.0585
作者姓名:汤安迪  韩统  徐登武  谢磊
作者单位:1.空军工程大学 研究生院, 西安 710038
基金项目:陕西省自然科学基金2020JQ-481陕西省自然科学基金2021JM224航空科学基金201951096002
摘    要:针对无人机(UAV)的航迹规划问题,提出了一种基于混沌多精英鲸鱼优化算法(CML-WOA)的航迹规划方法。首先,在已知飞行环境下,建立3D飞行空间模型和航迹代价模型。通过引入罚函数,将有约束3D航迹规划问题转化为无约束多维函数优化问题,利用CML-WOA求解模型来获得最优航迹。其次,为克服WOA易陷入局部最优的缺陷,引入立方映射混沌算子改善初始种群,增强种群多样性,并通过自适应框架融入正余弦算法(SCA),利用多精英搜索策略有效地提高了算法开发能力和探索能力。最后,使用贪婪策略保证了收敛效率。通过20个基准函数测试和航迹规划仿真实验对提出的改进WOA进行验证。结果表明:所提算法相对其他算法,寻优性能明显提升,具有较强局部最优规避能力和更高的收敛精度与收敛速度;能够稳定快速地规划出代价最少、满足约束的安全可行的飞行航迹。 

关 键 词:航迹规划   鲸鱼优化算法(WOA)   混沌算子   多精英搜索   正余弦算法(SCA)   全局优化
收稿时间:2020-10-15

Chaotic multi-leader whale optimization algorithm
TANG Andi,HAN Tong,XU Dengwu,XIE Lei. Chaotic multi-leader whale optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1481-1494. DOI: 10.13700/j.bh.1001-5965.2020.0585
Authors:TANG Andi  HAN Tong  XU Dengwu  XIE Lei
Affiliation:1.Graduate School, Air Force Engineering University, Xi'an 710038, China2.Aeronautics Engineering Institute, Air Force Engineering University, Xi'an 710038, China3.Team 94855 of PLA, Quzhou 324000, China
Abstract:Aimed at the path planning problem of Unmanned Aerial Vehicle (UAV), a path planning method based on a Chaotic Multi-Leader Whale Optimization Algorithm (CML-WOA) is proposed. In the known flight environment, 3D model of flight area and a flight path cost model are established. By introducing penalty functions, the constrained 3D path planning problem is transformed into an unconstrained multi-dimensional function optimization problem, which is solved using CML-WOA to obtain the optimal flight path. To overcome the defect that the WOA is easy to fall into local optimum, this paper introduces the cubic mapping chaos operator to improve the initial population and enhance the population diversity. And the Sine Cosine Algorithm (SCA) is integrated through an adaptive framework. A multi-leader search strategy is used to effectively improve the algorithm exploitation and exploration capability. Finally, a greedy strategy is used to ensure the convergence efficiency. The proposed improved CML-WOA is tested and validated by 20 benchmark functions test and path planning simulation experiments. The results show that the algorithm has significantly improved performance compared to other algorithms, with strong local optimal avoidance capability, higher convergence accuracy and convergence speed. Also, it is able to provide stable and fast planning of safe and feasible flight path with minimum cost and satisfying constraints. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号