首页 | 本学科首页   官方微博 | 高级检索  
     

基于记忆关联学习的小样本高光谱图像分类方法
作者姓名:王聪  张锦阳  张磊  魏巍  张艳宁
作者单位:1.西北工业大学 深圳研究院, 深圳 518057
基金项目:深圳市科技创新委员会基金;国家自然科学基金
摘    要:高光谱图像(HSI)分类是遥感领域的基础应用之一。该任务旨在根据部分带类别标签的像素样本训练分类器,预测图像中剩余像素对应的类别标签。在实际应用中,由于人工标记样本成本过高,只能获得少量带标签的样本。针对少量样本无法准确描述数据分布从而导致训练过程过拟合的问题,提出一种基于记忆关联学习的小样本高光谱图像分类方法。考虑到无标签样本中包含大量与数据分布相关的信息,构建基于有标签样本记忆模块,并根据样本间的特征关联,利用不断更新的记忆模块学习无标签样本的潜在类别分布,构建无监督分类模型,并与传统的有监督分类模型进行联合学习。在多个高光谱图像分类数据集上的实验结果表明,所提方法能有效提升小样本高光谱图像分类的准确性。 

关 键 词:记忆关联学习   半监督   小样本   高光谱图像(HSI)   分类
收稿时间:2020-09-07
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号