首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of ion dynamics on the evolution of electron phase-space holes
Institution:CAS Key Laboratory of Basic Plasma Physics, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026
Abstract:The evolution of two-dimensional (2D) electron phase-space holes (electron holes) has been previously investigated with electrostatic Particle-in-Cell (PIC) simulations, which neglect ion dynamics. The electron holes are found to be unstable to the transverse instability, and their evolution is determined by the combined action between the transverse instability and the stabilization by the background magnetic field. In this paper, the effect of ion dynamics on the evolution of an electron hole is studied. In weakly magnetized plasma (Ωe < ωpe, where Ωe and ωpe are electron gyrofrequency and plasma frequency, respectively), the electron hole is still unstable to the transverse instability. However, it evolves a little faster and is destroyed in a shorter time when ion dynamics is considered. In strongly magnetized plasma (Ωe > ωpe), the electron hole is broken due to the lower hybrid waves, and its evolution is much faster. 
Keywords:
点击此处可从《空间科学学报》浏览原始摘要信息
点击此处可从《空间科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号