首页 | 本学科首页   官方微博 | 高级检索  
     

神经元最优状态反馈控制及其在登月问题中的应用研究
引用本文:阮晓钢 郭锁凤. 神经元最优状态反馈控制及其在登月问题中的应用研究[J]. 南京航空航天大学学报, 1994, 26(6): 721-729
作者姓名:阮晓钢 郭锁凤
作者单位:南京航空航天大学自动控制系
摘    要:
以非线性系统自学习最优控制算法为基础,提出了一种基于人工神经元网络的非线性状态反馈最优控制策略,使非线性不确定性的被控系统能通过自学习实现某种最优的非线性反馈控制,本文对该控制策略在登月软着陆问题中应用进行仿真研究,验证了该控制策略的可行性和有效性。

关 键 词:最佳控制 神经元 非线性系统 软着陆飞行器

Studies on Neuro-Optimal State-Feedback Control and Its Applications to Lunar Soft Landing
Ruan Xiaogang, Guo Suofeng. Studies on Neuro-Optimal State-Feedback Control and Its Applications to Lunar Soft Landing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1994, 26(6): 721-729
Authors:Ruan Xiaogang   Guo Suofeng
Abstract:
An optimal nonlinear state-feedback control law is presented which is based on an artificial neural network and a self-learning optimal control algorithm for nonlinear systems. The neural network acts as a nonlinear state-feedback controller. The learning algorithm is used to get a training sample set of the optimal control law,and its convergence has been proved. The control law is applied to the control problem of a lunar soft landing vehicle to make the vehicle descend as desired,and its feasibility is studied and verified in a simulation experiment. The relationship between training and robustness of the neure-controller is analysed and tested.
Keywords:optimal control  neurons  learning control  nonlinear system  soft landing vehicles  neuro-control  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号